Some Significant Properties of Vermicompost of Great Agronomic Value

An Excerpt from

 Am-Euras. J. Agric. & Environ. Sci., 5 (S): 01-55, 2009

Earthworms Vermicompost: A Powerful Crop Nutrient over the Conventional Compost & Protective Soil Conditioner against the Destructive Chemical Fertilizers for Food Safety and Security


 a) High levels of bio-available nutrients for plants: Vermicompost contains most nutrients in plant-available forms such as ‘nitrates’ (N), ‘phosphates’ (P), ‘soluble’ potassium (K), & magnesium (Mg) and ‘exchangeable’ phosphorus (P) & calcium’ (Ca) (70 & 73). Vermicomposts have large particulate surface areas that provides many micro-sites for microbial activities and for the strong retention of nutrients (13 & 14). 

b) High level of beneficial soil microorganisms promoting plant growth: Vermicomposts are rich in ‘microbial populations & diversity’, particularly ‘fungi’, ‘bacteria’ and ‘actinomycetes’ (45; 50; 154; 166 & 188). Teotia (187) and also Parle (134) reported bacterial count of 32 million per gram in fresh vermicast compared to 6-9 million per gram in the surrounding soil. Scheu (154) reported an increase of 90% in respiration rate in fresh vermicast indicating corresponding increase in the microbial population. Suhane (182) found that the total bacterial count was more than 1010per gram of vermicompost. It included Actinomycetes, Azotobacter, Rhizobium, Nitrobacter & phosphate solubilizing bacteria which ranged from 102  – 106per gm of vermicompost. The PSB has very significant role in making the essential nutrient phosphorus (P) ‘bio-available’ for plant growth promotion (147). Although phosphates are available in soils in rock forms but are not available to plant roots unless solubilized.

Pramanik (138) studied the microbial population in vermicompost prepared from cow dung and municipal solid wastes (MSW) as substrates (raw materials) and found that it was in highest abundance in cow dung vermicompost. The total bacterial count was 73 x 108 , the cellulolytic fungi was 59 x 106 and the nitrogen-fixing bacteria was 18 x 103 . It was least in vermicompost obtained from MSW. The total bacterial count was 16 x 10, the cellulolytic fungi were 21 x 106  and the nitrogen-fixing bacteria were 5 x 103. Application of lime in the substrate enhanced the population of all above mentioned microbes irrespective of the substrates used for vermicomposting. Plant growth promoting bacteria (PGPB) directly stimulates growth by nitrogen (N) fixation, solubilization of nutrients, production of growth hormones such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indirectly by antagonising pathogenic fungi by production of siderophores, chitinase, ß-1,3-glucanase, antibiotics, fluorescent pigments and cyanide (95).

There is also substantial body of evidence to demonstrate that microbes, including bacteria, fungi, actinomycetes, yeasts and algae, also produce ‘plant growth regulators’ (PGRs) such as ‘auxins’, ‘gibberellins’, ‘cytokinins’, ‘ethylene’ and ‘ascorbic acids’ in appreciable quantities and as their population is significantly boosted by earthworms large quantities of PGRs are available in vermicompost (79).

 c) Rich in growth hormones: Biochemical stimulating total plant growth: Researches show that vermicompost further stimulates plant growth even when plants are already receiving ‘optimal nutrition’. Vermicompost has consistently improved seed germination, enhanced seedling growth and development and increased plant productivity much more than would be possible from the mere conversion of mineral nutrients into plant-available forms. Arancon (12) found that maximum benefit from vermicompost is obtained when it constitutes between 10 to 40% of the growing medium. Neilson (126 & 127) and Tomati (192) have also reported that vermicompost contained growth promoting hormone ‘auxins’, ‘cytokinins’ and flowering hormone ‘gibberellins’ secreted by earthworms. It was demonstrated by Grappelli (90) & Tomati (190;191 & 192) that the growth of ornamental plants after adding aqueous extracts from vermicompost showed similar growth patterns as with the addition of auxins, gibberellins and cytokinins through the soil. 

d) Rich in humic acids: Biochemical promoting root growth & nutrient uptake: Atiyeh (17; 18 & 19) speculates that the growth responses of plants from vermicompost appears more like ‘hormone-induced activity’ associated with the high levels of humic acids and humates in vermicompost rather than boosted by high levels of plant-available nutrients. This was also indicated by Canellas (49) who found that humic acids isolated from vermicompost enhanced root elongation and formation of lateral roots in maize roots. Pramanik (138) also reported that humic acids enhanced ‘nutrient uptake’ by the plants by increasing the permeability of root cell membrane, stimulating root growth and increasing proliferation of ‘root hairs’. 

e) Vermicompost is free of pathogens: Nair (125) studied that 21 days of a combination of  thermocomposting and vermicomposting produced compost with acceptable C:N ratio and good homogenous consistency of a fertilizer. The study also indicated that vermicomposting leads to greater reduction of pathogens after 3 months upon storage. Whereas, the samples which were subjected to only thermofilic composting, retained higher levels of pathogens even after 3 months. 

f) Vermicompost is free of toxic chemicals: Several studies have found that earthworms effectively bioaccumulate or biodegrade several organic and inorganic chemicals including ‘heavy metals’, ‘organochlorine pesticide’ and ‘polycyclic aromatic hydrocarbons’ (PAHs) residues in the medium in which it inhabits. 

g) Vermicompost protects plants against various pests and diseases: There has been considerable evidence in recent years regarding the ability of vermicompost to protect plants against various pests and diseases either by suppressing or repelling them or by inducing biological resistance in plants to fight them or by killing them through pesticidal action (3 & 5). 

i) Induce biological resistance in plants: Vermicompost contains some antibiotics and actinomycetes which help in increasing the ‘power of biological resistance’ among the crop plants against pest and diseases. Pesticide spray was significantly reduced where earthworms and vermicompost were used in agriculture.(168 & 182).  

ii) Repel crop pests: There seems to be strong evidence that worms varmicastings sometimes repel hard-bodied pests (3 & 12). Edwards & Arancon (74) reports statistically significant decrease in arthropods (aphids, buds, mealy bug, spider mite) populations and subsequent reduction in plant damage, in tomato, pepper and cabbage trials with 20% and 40% vermicompost additions. George Hahn, doing commercial vermicomposting in California, U.S., claims that his product repels many different insects pests. His explanation is that this is due to production of enzymes ‘chitinase’ by worms which breaks down the chitin in the insect’s exoskelton (124). 

iii) Suppress plant disease: Edwards & Arancon (74) have found that use of vermicompost in crops inhibited the soil-born fungal diseases. They also found statistically significant suppression of plant-parasitic nematodes in field trials with pepper, tomatoes, strawberries and grapes. The scientific explanation behind this concept is that high levels of agronomically beneficial microbial population in vermicompost protects plants by out-competing plant pathogens for available food resources i.e. by starving them and also by blocking their excess to plant roots by occupying all the available sites. This concept is based on ‘soil-foodweb’ studies pioneered by Dr. Elaine Ingham of Corvallis, Oregon, U.S. ( Edwards and Arancon (74) reported the agronomic effects of small applications of commercially produced vermicompost, on attacks by fungus Pythium on cucumber, Rhizoctonia on radishes in the greenhouse, by Verticillium on strawberries and by Phomposis and Sphaerotheca fulginae on grapes in the field. In all these experiments vermicompost applications suppressed the incidence of the disease significantly. They also found that the ability of pathogen suppression disappeared when the vermicompost was sterilized, convincingly indicating that the biological mechanism of disease suppression involved was ‘microbial antagonism.

Szczech (186), Orlikowski (130) Rodriguez (148) and Zaller (213) also found that the aqueous extracts of vermicomposts depress soil-borne pathogens and pests. They found in their field experiment that only half as many plants of tomatoes sprayed with aqueous extract of vermicompost were infected with Phytopthora infestans (that cause ‘late-blight’ disease) as those of control ones.